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A new synthesis of trifluorinated compounds
via 1,1-dichloro-1-alkenes in superacid
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Abstract—A two step process for converting ketone or aldehyde via 1,1-dichloro-1-alkenes to the corresponding 1,1,1-trifluoro-
derivatives is described, based on HF addition and chlorine–fluorine exchange under superacidic conditions.
� 2007 Elsevier Ltd. All rights reserved.
The unusual reactivity of functionalized organic sub-
strates, especially natural products, in HF–SbF5 system
is of great interest. Under these superacidic conditions,
such compounds are (poly)protonated and their reactiv-
ity is dramatically modified compared to conventional
acidic media. Novel and selective reactions as long-range
functionalization of unactivated C–H bonds,1 dearoma-
tization,2 isomerization of saturated or unsaturated sub-
strates,3 regioselective electrophilic trifluoromethylation
of substituted aromatics,4 and difluorination of various
compounds,5 have been discovered first using simple
substrates as model compounds, then applied to poly-
functional products. For example, under these highly
acidic conditions, it has been demonstrated that the Vin-
ca alkaloids such as vinorelbine afforded vinflunine,6 a
new difluoroderivative selected for its promising antitu-
mor activity (phase III clinical trials).

In search for new reactions, we have recently described a
novel access to trifluorinated compounds starting from
3-bromopropargyl amines in superacid.7 Taking into
account the proposed mechanism (Scheme 1) and postu-
lated intermediate ion C, extension to the readily avail-
able 1,1-dichloro-1-alkenes seemed worthwhile.

Such substrates are anticipated to be C-protonated to
give carbenium ion E, which is trapped by a fluoride
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ion ðSbF6
�; Sb2F11

� . . .Þ to afford a monofluoro inter-
mediate (Scheme 2). Halogen exchange should then lead
to the trifluorinated derivatives.

The preparation of a set of 1,1-dichloro-1-alkenes (1–8)
was carried out from various aldehydes or ketones
according to the known procedure.8 The chain extension
by one carbon to form dichloroolefins 2, 3, 5, 6, and 7
was accomplished by reaction of the aldehydes or
ketones with the carbontetrachloride–triphenylphosphine
reagent in tetrahydrofuran at 60 �C.9,10 Supplementary
addition of activated magnesium at room temperature
was done to afford 3.11 While 3-fluorene 7, 2-quinoline
6, and alkyl derivative 3 are prepared in good yield
(respectively, 81%, 62%, 97%), the desired dichloroole-
fins 2 and 5 were isolated in lower yield (20%) together
with unreacted starting material. Substrates 1, 4, and 8
are commercially available (Fig. 1).

All 1,1-dichloro-1-alkenes 1–8 were then submitted to
acidic conditions. Preliminary experiments were per-
formed using HF alone (0 �C, 5 h). In all cases, starting
material was recovered. The use of more acidic condi-
tions (HF–SbF5) was then considered.12

In the present study, the reactions were carried out in
HF–SbF5 (molar ratio 7/1) at low temperature
(�20 �C to �40 �C). Starting materials were completely
transformed within 10–20 min of reaction time. In some
cases, subsequent treatment with HF–pyridine 70/30
(v/v 1 mL)13 was required (Table 1, entries 2, 5, and 6)
at �78 �C. Then, the resulting mixture was quenched
with iced water and sodium carbonate. After extraction
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Scheme 1. Proposed mechanism for the formation of trifluorinated compounds.
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Scheme 2. Dihalogeno alkenes as precursor of trifluorinated compounds.
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Figure 1. Starting materials.
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with dichloromethane and usual work-up, the products
were purified by column chromatography over SiO2.

The isolated yields reported in Table 1 were obtained
after complete consumption of starting material.

It should be noticed that compounds 1, 2, 4, 5, and 6
afford the trifluorinated derivatives as the sole product.
Reaction yields are modest with diester 2 but fair to
good with the other substrates.
Only a short reaction time is needed to give the expected
trifluorinated compound from 1 (Z/E ratio 25/75). The
same experimental procedure furnished an inseparable
mixture of CClF2/CF3 for phenol 4 or CCl2F/CClF2/
CF3 derivatives for compounds 2, 5, and 6 (as deter-
mined by 19F NMR). Complete exchange to afford
CF3 compounds required longer reaction times (phenol
4) and/or the use of more fluorinating reagent HF–pyr-
idine (2, 5, and 6). In addition, alkyl substrate 3 did not
afford the corresponding trifluoroderivative but an



Table 1. Reactivity of 1,1-dichloro-1-alkenes derivatives in HF–SbF5

Entry Starting material T (�C), time (min) Yield (%) Product

1 1 �40, 10 59

OO

CF3

9

2 2 �40,a 15 35 O

O

CF3

OH

O

10

3 3 �40, 10 — Complex mixture

4 4 �40, 15 72

OH

CF3

11

5 5 �20,a 20 50

N
H

CF3

12

6 6 �20,a 20 71
N

CF3

13

7 7 �40, 10 — No reaction
8 8 �40, 10 — No reaction

a Followed by treatment with HF–pyridine.
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inseparable complex mixture. Finally, aromatic sub-
strate 7 and amide derivative 8 remained unchanged
under these acidic conditions.

For all trifluorinated compounds, structure assignment
was made by 1H, 13C, and 19F NMR. As expected, 19F
NMR spectrum exhibits specific signals (9, 11, 12, 13:
d = �65.3 to �69 ppm, t, J = 11 Hz; 10, �71.1, d,
J = 9 Hz)14 in agreement with the trifluoro moiety.

For all substrates, we observed the sole formation of
1,1,1-trifluorinated compounds. This result can be
Cl
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Scheme 3.
explained by assuming the initial regioselective proton-
ation of the double bond to afford the more stabilized
a-dichlorocarbenium ion E-1, precursor of the 1,1,1-tri-
fluorinated compounds (Scheme 3). This result is in
agreement with the known stabilization of a-chloronium
ions by chlorine atom which becomes both a p donor
and a r donor.15,5

The postulated mechanism is outlined in Scheme 4
(quinoline derivative). In HF–SbF5, this substrate is
N-protonated. Further regioselective protonation of
dichloroalkene F affords carbenium ion G, which is
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5258 A.-C. Cantet et al. / Tetrahedron Letters 48 (2007) 5255–5260
trapped by a fluoride ion ðSbF6
�; Sb2F11

�Þ to give ion
H. Protonation of one of the chlorines followed by elim-
ination of HCl yields the more stabilized ion I, which
can react with a fluoride ion leading to ion J. The same
sequence of protonation–elimination of HCl affords a-
fluoronium ion K, precursor of the trifluorinated com-
pound 13 (Scheme 4). Halogen exchange is observed in
HF–SbF5 alone (entries 1, 4) but may necessitate a more
fluorinating reagent13,4 (HF–pyridine) to reach comple-
tion (entries 2, 5, and 6).

Such mechanism can be ruled out for iminium ion of
indole 5,16 O-protonated phenolic compound 4,17 and
di-O-protonated esters 1 and 2.18 For diester 2, cleavage
of one ester function is observed leading to a lower
isolated yield (35%). As previously described by Olah
under such superacidic conditions, the ethyl esters are
cleaved via acyl-oxygen fission to afford the correspond-
ing carboxylic acid.19
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Particular behavior was observed for compounds 3, 7,
and 8. For the alkyl derivative 3, a rearranged and
inseparable mixture of compounds is observed. This
unexpected reactivity may be due to isomerization of
the alkyl chain under superacidic conditions. Similar
behavior of alkyl derivatives has been already observed
in HF–SbF5.20–22

The lack of reactivity of substrates 7 and 8 could be
explained by strong mesomeric stabilization of a positive
charge as outlined in Scheme 5.

In superacids, the C-protonated aromatic substrate 7
and the O-protonated amide 8 should lead, respectively,
to the highly stabilized ions M and N (Scheme 5). The
low reactivity of ions M and N did not allow the
expected trapping by fluorine ion, the poor nucleophilic
nature of fluoride ion ðSbF6

�; Sb2F11
�Þ accounting for

this result.23–25
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In conclusion, this new reaction appears to be a very
interesting way to prepare 1,1,1-trifluorinated com-
pounds in two steps, starting from aldehyde or ketone
via the corresponding 1,1-dichloroalkenes. This process
may be limited in the case of substrates leading to highly
stabilized carbenium ions.

Extension of this novel reaction to polyfunctional bio-
active products will be reported in a near future.
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